×

Sabit Bataryalı Enerji Depolama Sistemleri İçin Standartlardaki Batarya Güvenlik Deneylerine Genel Bakış Bölüm-7



Sabit Bataryalı Enerji Depolama Sistemleri İçin
Standartlardaki  
Batarya Güvenlik Deneylerine Genel Bakış 
Bölüm-7


Yazarlar
Hildebrand, S. Eddarir, A. Lebedeva, N.
Aşağıdaki JRC Teknik Raporu Avrupa Birliği  web sitesindeki orjinal İngilizce versiyonundan  alınarak  ETP Enerji Depolama  Çalışma Grubumuzdan Sabri Günaydın  tarafından yapay zeka çeviri yazılımları kullanarak Türkçe'ye çeviri yapılmış , kontrol edilerek düzenlenmiştir.Rapor bölümler halinde yayınlanacaktır.

Kaynak: https://publications.jrc.ec.europa.eu/repository/handle/JRC135870
(Rapor Tarihi 01.02.2024 )  Bu yayın tüm hakları saklı olmak üzere telif hakkıyla korunmaktadır. 

Avrupa Birliği Yayınlar Ofisi'nin, JRC Teknik Rapor yazarlarının Türkçe çeviri ile ilgili sorumluluğu yoktur. ETP  Türkçe çeviri ve düzenleme sorumluluğunu üstlenir.

Türkçe çeviride  göreceğiniz olası hataları " iletisim@etp.com.tr "  adresine e-posta göndermenizi rica ederiz. 

Bu raporun ETP Portalımızda yayını ile ilgili bize izin veren , destek ve kılavuz olan   Avrupa Birliği Yayınlar Ofisi'nden Mr. Brian Killeen 'e  teşekkür ederiz. 





Teşekkür

Yazarlar, bu raporu dikkatle inceleyen Marc Steen ve Andreas Pfrang'a ve kapak sayfasını tasarlayan
Bağdagül Tan'a teşekkür eder.

Bay W. Hao (Çin Otomotiv Teknolojisi ve Araştırma Merkezi (CATARC), Çin), Bay A. Nilar (Avustralya Hükümeti, Avustralya), Bay D. Kutschkin (Avustralya Hükümeti, Avustralya), Bay S. Spencer (Avustralya Hükümeti, Avustralya) ve Bayan L. Rasmussen (Avustralya Hükümeti, Avustralya), Bay A. Murdoch (Energy Safe Victoria, Avustralya), Bay N. Agarwal (Bureau of Indian Standards and Government of India, Hindistan), Bay M. M. Desai (The Automotive Research Association of India, Hindistan), Bay B. Moon'a (Korea Automobile Testing & Research Institute (KATRI), Kore) bu ülkelerdeki ulusal standartlar konusunda teşekkür ederiz.

Yazarlar
Hildebrand, S.
Eddarir, A.
Lebedeva, N.


3.11 Yangın deneyi

Yönetmelik Metni [1]:

Yangın deneyinin prensibi standartlar arasında benzerdir.  DUT, belirli bir süre boyunca belirli bir yükseklikte belirli bir şekilde üretilen bir  üzerine yerleştirilir (bkz. Şekil 3). UL 1642:2020, olası sıçrayan cisimleri tutmak için DUT için ek bir çelik tel örgü kap gerektirir.



Şekil 3. Yangın deneyinin gösterimi: Solda Meker tipi bir yakıcı (UL 1642:2020'de gerekli) ve sağda bir yakıt tavası (UL 1973:2022 ve IEC 62984-2:2020'de gerekli) kullanılarak
 


 
Yangın deneyi için deney koşulları standartlar arasında önemli ölçüde farklılık göstermektedir (bkz. Tablo 12). DUT, standartlar arasında hücreden sisteme değişmektedir. Ancak, DUT ya tam şarjlıdır ya da %100 SOC'dedir.

Standartlar geniş bir ortam deney sıcaklığı aralığı vermektedir. UL 1973:2022, deneyin rüzgar veya diğer çevresel faktörlerden arındırılmış olarak yapılmasını gerektirir. IEC 62984-2:2020'de deney açık havada gerçekleştirilir. UL 1642:2020'de DUT, açıklıkları olan çelik tel örgü bir kaba konur. UL 1973:2022, deneyin koruyucu bir deney odasında yapılmasını gerektirir.DUT'nin yangının  üzerine yerleştirilmesi standartlar arasında brülör/yakıt yüzeyinin 3,8 cm ila 50 cm üzerinde değişmektedir.


UL 1973:2022 ve IEC 62984-2:2020 yangın kaynağı olarak heptan (veya benzer bir sıvı hidrokarbon) kullanırken UL 1642:2020 gaz (örneğin bütan) kullanır. Bir gaz yakıcıündeki yanmanın ısı akısı, yalnızca belirli bir gaz kütle akış hızı altında sıvı hidrokarbon yangınıyla karşılaştırılabilir [42]. UL 16420, deney sırasında bir kütle akış hızı veya gaz belirtmez.

Yangın deneyinin batarya kimyasına bağlı olarak farklı amaçları vardır ve bu da farklı başarılı/başarısız kriterlerine yol açar. UL 1973:2022 ve IEC 62984-2:2020'de hücre sadece belirli bir süre yangına maruz kalırken UL 1642:2020'de hücre tutuşma, patlama veya yanma gerçekleşene kadar  yangına maruz kalır. Sonuç olarak, UL 1642 için başarılı başarısız kriteri sadece koruyucu tel örgüye hiçbir şeyin nüfuz etmemiş olmasıdır. UL 1973'te alev alan bir batarya da patlamadığı ve sıçrayan cisimler  DUT'un en uzun kenarının dış kenarından itibaren 1 m'lik bir çevre içinde kaldığı sürece geçer. UL 1973:2022 ve UL1642:2020'de bu deneyin sonucunun yıkıcı olması beklenmektedir. IEC 62984-2:2020, batarya sisteminin normal çalışma sırasında yüksek sıcaklıklara dayanması gerektiğinden, bataryanın doğasından kaynaklanabilecek daha katı geçiş kriterlerine (örn. yırtılma yok) sahiptir.



4    Gazların emisyonu

Yönetmelik Metni [1]:

Bataryalar, yüksek derecede yanıcı elektrolitler, aşındırıcı ve zehirli bileşenler gibi önemli miktarlarda potansiyel olarak tehlikeli maddeler içerebilir. Belirli koşullara maruz kalması halinde, bataryanın bütünlüğü tehlikeye girerek tehlikeli gazların salınmasına neden olabilir. Bu nedenle, deneyler sırasında bataryadan  salınan maddelerden kaynaklanan gaz emisyonlarının belirlenmesi önemlidir: sulu olmayan elektrolitlerden yayılan toksik gaz riski, 1 ila 10. maddelerde listelenen tüm güvenlik parametreleri için uygun şekilde dikkate alınmalıdır. 

Gaz emisyonunun ölçümü Yönetmeliğin Ek V'indeki güvenlik deneyleri listesinde yer alsa da, kendi başına bir deney olmayıp listelenen tüm deneyler için bir gereklilik olarak kabul edilebilir. Bu nedenle, toksik gaz emisyonunun tüm deneyler için başarılı/başarısız kriteri olarak belirlenmesi ve uygun bir doğrulama yöntemine ihtiyaç duyulduğu sonucuna varılabilir. Bunun deneylerin yürütülmesine (örneğin kapalı bir ortamda yürütülmesi) etkileri vardır. Bir gaz konsantrasyonunun ölçüleceği yanıcı buhar konsantrasyonlarının (UL 1973:2022'de) aksine, sadece zehirli gazların varlığının (salınımının) belirleneceğini belirtmek gerekir. Bu da doğrulama ekipmanında başka gerekliliklere yol açmaktadır.

UL 1973 toksik emisyonların belirlenmesine ilişkin bir bölüm içermektedir. Toksik gaz emisyonlarına neden olabilecek (yıkıcı) deneyler için geçerlidir. Bu gazlara maruz kalma potansiyeli bu ölçümle doğrulanabilir. UL 1973:2022'de atıfta bulunulan toksik emisyonların belirlenmesi için belirlenmiş yöntemler Tablo 13'te listelenmiştir. Doğal havalandırma ile açık havaya yerleştirilen veya bir havalandırma sistemi ile donatılmış olan SESS sistemleri toksik gaz emisyonlarının belirlenmesinden muaftır.

Tablo 13. "Gazların emisyonu" gerekliliği için UL 1973:2020'deki bilgilerin özeti



Hava izleme ile ilgili standartlar, gazların emisyonunu doğrulamak için uygun olabilecek genel bilgiler ve yöntemler sağlar:

—    ISO 16000 - İç mekan havası [47]
Bu standart serisi, iç mekan hava kirliliğinin tanımlanması ve ölçülmesi ile ilgilidir. İlgili bölümler şunlardır.

●    ISO 16000-1:2004 İç ortam havası Bölüm 1: Numune alma stratejisinin genel yönleri [47]
●    ISO 16000-5:2007 İç ortam havası Bölüm 5: Uçucu organik bileşikler (VOC'ler) için numune alma stratejisi [48]
●  ISO 16000-6:2021 İç ortam havası Bölüm 6: Sorbent tüpler üzerinde aktif örnekleme, ısıldesorpsiyon ve MS veya MS FID kullanılarak gaz kromatografisi ile iç ortam ve deney odası havasında organik bileşiklerin (VVOC, VOC, SVOC) belirlenmesi [49]
●    ISO 16000-29:2014 İç ortam havası Bölüm 29: VOC dedektörleri için deney yöntemleri [50]

—    Özel Olarak Hazırlanmış Kutularda Toplanan ve Gaz Kromatografisi ve Kütle spektrometresi ile analiz edilen havadaki VOC'lerin (uçucu organik bileşikler) belirlenmesi için EPA Yöntemi TO-15 [51]

—    Atmosferik Gazların Uzun Yol Açık Yol Fourier Dönüşümlü Kızılötesi İzlenmesi için EPA Yöntemi TO-16 [52]

        Sorbent tüpler üzerine aktif örnekleme kullanarak havadaki VOC'lerin belirlenmesi için EPA Yöntemleri TO-17 [53]

 —    "Harici kıvılcım kaynaklarından iç tutuşmaya karşı koruma" testi EN 60891-21+22:2004 [25,26]

Bundan sonraki bölümde  "(AB) 2023/1542 sayılı Tüzüğün Ek V'inde gerekli olmayan standartlarda belirtilen diğer   güvenlik deneyleri " anlatılacaktır. 



Kaynaklar:

[1]    AVRUPA PARLAMENTOSU VE KONSEYİN 12 Temmuz 2023 tarih ve (AB) 2023/1542 sayılı batarya  ve atık bataryalara ilişkin YÖNETMELİĞİ, Direktif 2008/98/EC'yi ve Yönetmelik (AB) 2019/1020'yi değiştiren ve Direktif 2006/66/EC'yi yürürlükten kaldıran, Kapalı . J. Eur. Birlik. L 191/1 (2023).

[2]    D. Gatti, A. Holland, L. Gear, X. He, IDTechEx raporu: Sabit Enerji Depolamaya Yönelik Bataryalar 2021-2031, 2021.

[3]    J. Figgener, C. Hecht, D. Haberschusz, J. Bors, KG Spreuer, K.-P. Kairies, P. Stenzel, DU Sauer, Almanya'da batarya depolama sistemlerinin gelişimi: Bir pazar incelemesi (durum 2023), (2022) 1 29. http://arxiv.org/abs/2203.06762.

[4]    M. Bieleweski, A. Pfrang, S. Bobba, A. Kronberga, A. Georgakaki, S. Letout, A. Kuokanen, A. Mountraki, E. İnce, D. Shtjefni, G. Joanny Ordonez, O. Eulaerts, M. Grabowska, Temiz Enerji Teknolojisi Gözlemevi: Avrupa Birliği'nde Enerji Depolamaya Yönelik Bataryalar 2022 Teknoloji Gelişimi, Trendler, Değer Zincirleri ve Piyasalar Durum Raporu, Yayınlar Ofisi Avrupa Birliği, 2022. https://doi.org/10.2760/808352.

[5]    Batarya Tabloları, (2023). https://scarica.isea.rwth-aachen.de/mastr/d/JFKs3f97z/speicherstatus?orgId=1 (14 Temmuz 2023'te erişildi).

[6]    Eurostat, Demografi 2023 baskısı, (2023). https://ec.europa.eu/eurostat/web/interactive-publications/ demography-2023 (6 Eylül 2023'te erişildi).

[7]    Avrupa Komisyonu, C(2021) 8614 nihai M/579 Bataryalar için performans, güvenlik ve sürdürülebilirlik gerekliliklerine ilişkin Avrupa standardizasyon kuruluşlarına yapılan standartlaştırma talebine ilişkin 7.12.2021 tarihli KOMİSYON UYGULAMA KARARI, 2021.

[8]    UL 1973:2022, Sabit ve Hareketli Yardımcı Güç Uygulamalarında Kullanıma Yönelik Bataryalar, 2022.

[9]    UL 9540A:2019, Batarya Enerji Depolama Sistemlerinde Isıl Kaçak Yangın Yayılımının Değerlendirilmesine Yönelik Deney Yöntemi, 2019.
[10]    IEC 62984-2:2020, Yüksek sıcaklıklı ikincil  Bölüm 2: Güvenlik gereklilikleri ve deneyler, 2020.

[11]    IEC 62932-2-2:2020, Sabit uygulamalar için elektrolit dolaşımşlı batarya güç sistemleri - Bölüm 2-2: Güvenlik gereklilikleri , 2020.

[12]    IEC 62933-5-3:2023, Elektrik enerjisi depolama (EES) sistemleri - Bölüm 5-3: Şebekeye entegre EES sistemleri için güvenlik gereklilikleri Elektrokimyasal bazlı sistemde plansız değişiklik yapılması, 2023.

[13]    IEC 62485-2:2010, İkincil bataryalar ve batarya kurulumları için güvenlik gereklilikleri - Bölüm 2: Sabit bataryalar, 2010.

[14]    IEC 62485-5:2020, İkincil bataryalar  ve batarya  kurulumları için güvenlik gereklilikleri - Bölüm 5: Güvenli sabit lityum iyon bataryaların çalışması, 2020.

[15]    IEC 60896-11:2002, Sabit kurşun-asit bataryalar - Bölüm 11: Havalandırmalı tipler - Genel gereklilikler ve deney yöntemleri, 2002.

[16]    IS 17092:2019, Elektrik Enerjisi Depolama Sistemleri: Güvenlik Gereklilikleri, 2019.

[17]    AS/NZS 5139:2019, Elektrik kurulumları - Güç dönüşümüyle kullanım için batarya  sistemlerinin güvenliği ekipman, 2019.

[18]    GB/T 34866-2017, Vanadyum akışlı batarya -- Güvenlik gereklilikleri, 2017.

[19]    IEC 62619:2022, Alkali veya diğer asit olmayan elektrolitler içeren ikincil lityum hücreler ve bataryalar -
Endüstriyel uygulamalarda kullanıma yönelik ikincil lityum hücreler ve bataryalar  için güvenlik gereklilikleri, 2022.

[20]    IEC 63056:2020, Alkali veya diğer asit olmayan elektrolitler içeren ikincil hücreler ve bataryalar  -
Elektrik enerjisi depolama sistemlerinde kullanıma yönelik ikincil lityum hücreler ve  bataryalar için güvenlik gereklilikleri şu anda aşamasındadır. Uluslararası Nihai Taslak Stan, 2020'nin tercümesi.

[21] UL 1642:2020, Lityum Bataryalar, 2020.

[22]    VDE-AR-E 2510-50 Anwendungsregel:2017-05, Lityum bataryalı  sabit batarya enerji depolama sistemleri,2017.

[23]    GB 40165-2021, Sabit elektronik ekipmanlarda  kullanılan lityum iyon hücreler ve bataryalar - Güvenlik teknik şartnamesi, 2021.

[24]    IEC 63115-2:2021, Alkali veya diğer asit olmayan elektrolitler içeren ikincil hücreler ve bataryalar -
Endüstriyel uygulamalarda kullanıma yönelik yalıtılmış nikel-metal hidrür hücreler  ve bataryalar - Bölüm 2: Güvenlik, 2021.

[25]    IEC 60896-21:2004, Sabit kurşun-asit bataryalar  - Bölüm 21: Valf ayarlı tipler - Deney yöntemleri, 2004.

[26]    IEC 60896-22:2004, Sabit kurşun-asit bataryalar  - Bölüm 22: Valf ayarlı tipler - Gereklilikler, 2004.

[27]    KS C IEC 62619, Alkali veya diğer asit olmayan elektrolitler içeren ikincil hücreler ve bataryalar
Endüstriyel uygulamalarda kullanıma yönelik ikincil lityum hücreler ve bataryalar için güvenlik gereklilikleri, 2023.

[28]    AS IEC 62619:2023, Alkali veya diğer asit olmayan elektrolitler içeren ikincil hücreler ve bataryalar  -
Endüstriyel uygulamalarda kullanıma yönelik ikincil lityum hücreler ve bataryalar için güvenlik gereklilikleri, 2023.

[29]    IS 17067:Bölüm 5:Bölüm 2:2021, Elektrik enerjisi depolama EES sistemleri Bölüm 5 Şebekeye entegre EES sistemleri için güvenlik gereklilikleri Bölüm 2 elektrokimyasal bazlı sistemler, 2021.

[30]    ISO 6469-1:2019/Amd 1:2022, Elektrikle çalışan karayolu taşıtları Güvenlik spesifikasyonları Bölüm 1: Şarj edilebilir enerji depolama sistemi (RESS) Değişiklik 1: Isıl yayılımın güvenlik yönetimi, (2022).

[31]    GB 38031:2020, Elektrikli araçlar  cer bataryası  güvenlik gereklilikleri, (2020).

[32]    V. Ruiz, A. Pfrang, A. Kriston, N. Omar, P. Van den Bossche, L. Boon-Brett, Elektrikli ve hibrit elektrikli araçlardaki lityum iyon bataryalara  yönelik uluslararası kötüye kullanım deneyi standartları ve düzenlemelerine ilişkin bir inceleme, Renew.  Güç vermek. Enerji Rev. 81 (2018) 1427 1452. https://doi.org/https://doi.org/10.1016/j.rser.2017.05.195.

[33]    IEC 62933-5-2:2020, Elektrik enerjisi depolama (EES) sistemleri Bölüm 5-2: Şebekeye entegre EES sistemleri için güvenlik gereklilikleri - elektrokimyasal tabanlı sistemler, 2020.

[34]    ISO 13849-1:2023, Makine güvenliği - Kontrol sistemlerinin güvenlikle ilgili parçaları - Bölüm 1: Tasarım için genel ilkeler, 2023.

[35]    ISO 13849-2:2012, Makine güvenliği - Kontrol sistemlerinin güvenlikle ilgili parçaları - Bölüm 2: Doğrulama, 2012.

[36]    IEC 62061:2021, Makine güvenliği - Güvenlikle ilgili kontrol sistemlerinin işlevsel güvenliği, 2021.

[37]    ISO/SAE 21434:2021, Karayolu araçları Siber Güvenlik mühendisliği, 2021.

[38] G. Petrangeli, Derinlemesine savunma, içinde: Nucl. Saf., Elsevier, 2006: s. 89 91. https://doi.org/10.1016/B978- 075066723-4/50010-3.

[39]    Y. Yang, R. Wang, Z. Shen, Q. Yu, R. Xiong, W. Shen, Daha güvenli bir lityum iyon bataryalara doğru: Isıl kaçak için neden, özellikler, uyarı ve imha stratejisi üzerine eleştirel bir inceleme, Adv. Başvuru Enerji. 11 (2023) 100146. https://doi.org/ 10.1016/j.adapen.2023.100146.

[40]    A. Pfrang, A. Kriston, V. Ruiz, N. Lebedeva, F. di Persio, Li-ion Teknolojisine Odaklı Şarj Edilebilir Enerji Depolama Sistemlerinin Güvenliği, içinde: Emerg. Nanoteknolojiler Yeniden Şarj Ediliyor. Enerji Depolama Sistemi, Elsevier, 2017: s. 253 290. https://doi.org/10.1016/B978-0-323-42977-1.00008-X.

[41]    IEC 62133-2:2017, Alkali veya diğer asit olmayan elektrolitler içeren ikincil hücreler ve bataryalar -
Taşınabilir uygulamalarda kullanılmak üzere taşınabilir sızdırmaz ikincil hücreler ve bunlardan yapılan bataryalar için güvenlik gereklilikleri - Bölüm 2: Lityum sistemler, 2017.

[42]    H. Jung, B. Moon, S. Lee, J. Bae, REESS için Yangına Dayanıklılık Deneyinde Isıl Enerji Üzerine Bir Araştırma, içinde: 25th Int. Teknik. Konf. Geliştir. Saf. Veh., Yer: Detroit Michigan, Amerika Birleşik Devletleri, 2017. https://www-esv.nhtsa.dot.gov/ Proceedings/25/25ESV-000348.pdf.

[43]    ASTM D4490, Dedektör tüpleri kullanarak zehirli gazların konsantrasyonlarını ölçmek için standart uygulama,2011

[44]    ASTM D4599, Leke uzunluğu dozimetreleri kullanılarak zehirli buhar gazlarının konsantrasyonlarının ölçülmesine yönelik standart uygulama, 2014.

[45]    OSHA: Spektroskopik analiz kullanan hava örnekleme yöntemleri için değerlendirme kılavuzları, (2005).

[46]    CDC, NIOSH Analitik Yöntemler El Kitabı (NMAM) 5. Baskı, (2020).

[47]    ISO 16000-1:2004, İç mekan havası Bölüm 1: Örnekleme stratejisinin genel yönleri, 2004.

[48]    ISO 16000-5:2007, İç mekan havası Bölüm 5: Uçucu organik bileşikler (VOC'ler) için numune alma stratejisi, 2007.

[49]  ISO 16000-6:2021, MS veya MS FID kullanılarak emici tüpler üzerinde aktif numune alma, ısıl desorpsiyon ve gaz kromatografisi yoluyla iç mekan ve deney odası havasındaki organik bileşiklerin (VVOC, VOC, SVOC) belirlenmesi, 2021.

[50]    ISO 16000-29:2014, İç mekan havası Bölüm 29: VOC dedektörleri için deney yöntemleri, 2014.
 
[51]    ABD Çevre Koruma Ajansı (EPA), Ortam Havasındaki Toksik Organik Bileşiklerin Tayini İçin Yöntemler Özeti İkinci Baskı Özet Yöntemi TO-15 Özel Hazırlanmış Bidonlarda Toplanan ve Gaz Kromatosu Tarafından Analiz Edilen Havadaki Uçucu Organik Bileşiklerin (VOC) Tayini, 1999. https://www3.epa.gov/ttnamti1/files/ambient/airtox/to-15r.pdf (9 Haziran 2023'te erişildi).
[52]    ABD Çevre Koruma Ajansı (EPA), Ortam Havasındaki Toksik Organik Bileşiklerin Belirlenmesi için Yöntemler Özeti İkinci Baskı Özeti Yöntem TO-16 Atmosferik Gazların Uzun Yol Açık Yol Fourier Dönüşümlü Kızılötesi İzlenmesi,1999. https://www.epa.gov /sites/prodüksiyon/files/2019-11/documents/to-16r.pdf (9 Haziran 2023'te erişildi).
 
[53]   ABD Çevre Koruma Ajansı (EPA), Özet Yöntemi TO-17: Emici Tüpler Üzerinden Aktif Örnekleme Kullanılarak Ortam Havasındaki Uçucu Organik Bileşiklerin Belirlenmesi, 1999. https://www.epa.gov/sites/prodüksiyon/files/2019-11 / documents/to-17r.pdf (17 Kasım 2023'te erişildi).
[54]  SAE J2997 (WIP) Bataryanın ikincikl kullanımına ilişkin standart(Bu standart  şu anda  devam eden bir çalışmadır.) ,2012. 

[55]    UL 1974:2018, ANSI/CAN/UL Bataryaların yeniden Kullanılmasına İlişkin Değerlendirme Standardı, 2018.
 
Kısaltmalar ve tanımların listesi

ASTM             Amerikan Deney ve Malzemeler Derneği (ABD)
BESS             Batarya enerji depolama sistemi
BMS               Batarya yönetim sistemi
BMU               Batarya yönetim ünitesi
CEN               Avrupa Standardizasyon Komitesi
CENELEC      Avrupa Elektroteknik Standardizasyon Komitesi
DUT               Deneyi gerçekleştirilen cihaz
EMC               Elektromanyetik uyumluluk
EPA                Çevre Koruma Ajansı (ABD)
EV                  Elektrikli araç
FB                   Akış bataryası(Flow battery/Elektrolit dolaşımlı batarya)
He                   Helyum
IEC                  Uluslararası Elektroteknik Komisyonu
ISO                  Uluslararası Standardizasyon Örgütü
LER                 Hafif elektrikli raylı sistem
Li-ion               Lityum-iyon
Na HT              Sodyum yüksek sıcaklık
NiMH               Nikel-metal Hidrit
NIOSH             Ulusal Mesleki Güvenlik ve Sağlık Enstitüsü (ABD)
OSHA               Mesleki Güvenlik ve Sağlık İdaresi (ABD)
Pb asid             Kurşun asit
SEI                   Katı elektrolit fazlar arası SEI
SBESS             Sabit bataryalı enerji depolama sistemi
SOC                 Şarj durumu
SOH                 Sağlık durumu
SVOC               Yarı uçucu organik bileşikler

Kaynak: https://publications.jrc.ec.europa.eu/repository/handle/JRC135870
(Rapor Tarihi 01.02.2024 ) 
 Bu yayın tüm hakları saklı olmak üzere telif hakkıyla korunmaktadır. © European Union/Avrupa Birliği, 2024


Bu yayın, Avrupa Komisyonu'nun bilim ve bilgi servisi olan Ortak Araştırma Merkezi (JRC) tarafından hazırlanan bir Teknik rapordur. Avrupa politika oluşturma sürecine kanıta dayalı bilimsel destek sağlamayı amaçlamaktadır. Bu yayının içeriği Avrupa Komisyonu'nun görüş veya tutumunu yansıtmak zorunda değildir. Ne Avrupa Komisyonu ne de Komisyon adına hareket eden herhangi bir kişi bu yayının kullanımından sorumlu değildir. Bu yayında kullanılan ve kaynağı ne Eurostat ne de diğer Komisyon hizmetleri olan verilerin altında yatan metodoloji ve kalite hakkında bilgi almak için, kullanıcılar atıfta bulunulan kaynakla irtibata geçmelidir. Haritalarda kullanılan tanımlamalar ve materyallerin sunumu, Avrupa Birliği'nin herhangi bir ülke, bölge, şehir veya alanın veya yetkililerinin yasal statüsü veya sınırlarının veya sınırlarının sınırlandırılmasıyla ilgili herhangi bir görüş ifade ettiği anlamına gelmez.


İletişim bilgileri
  • Stephan Hildebrand
          E-posta: stephan.hildebrand@ec.europa.eu
  • Natalia Lebedeva
         E-posta: natalia.lebedeva@ec.europa.eu


AB Bilim Merkezi
https://joint-research-centre.ec.europa.eu


Teşekkür

Yazarlar, bu raporu dikkatle inceleyen Marc Steen ve Andreas Pfrang'a ve kapak sayfasını tasarlayan Bağdagül Tan'a teşekkür eder.

Bay W. Hao (Çin Otomotiv Teknolojisi ve Araştırma Merkezi (CATARC), Çin), Bay A. Nilar (Avustralya Hükümeti, Avustralya), Bay D. Kutschkin (Avustralya Hükümeti, Avustralya), Bay S. Spencer (Avustralya Hükümeti, Avustralya) ve Bayan L. Rasmussen (Avustralya Hükümeti, Avustralya), Bay A. Murdoch (Energy Safe Victoria, Avustralya), Bay N. Agarwal (Bureau of Indian Standards and Government of India, Hindistan), Bay M. M. Desai (The Automotive Research Association of India, Hindistan), Bay B. Moon'a (Korea Automobile Deneying & Research Institute (KATRI), Kore) bu ülkelerdeki ulusal standartlar konusunda teşekkür ederiz.

Yazarlar

Hildebrand,S.
Eddarir, A.
Lebedeva, N.



EU JRC (Joint Research Center)   AB Ortak Araştırma Merkezi Hakkında 


JRC, toplumu olumlu yönde etkilemek için AB politikalarını destekleyen bağımsız, kanıta dayalı bilgi ve bilim sağlar.

JRC, AB politika döngüsünün birçok aşamasında kilit bir rol oynamaktadır. Horizon Europe'un genel hedefine katkıda bulunur.

Üye Devletlerdeki araştırma ve politika kuruluşlarıyla, Avrupa kurum ve ajanslarıyla ve Birleşmiş Milletler sistemi de dahil olmak üzere Avrupa'daki ve uluslararası bilimsel ortaklarla yakın işbirliği içinde çalışıyoruz.

Sunduğumuz temel güçlü yönler öngörü, entegrasyon ve etkidir.

Öngörü, son krizin ötesinde bizi nelerin beklediğine ve gelecekteki politika girişimleri için bilimsel dayanak sağlayabilmeye odaklanır.

Entegrasyon, Komisyon içindeki ve ötesindeki farklı bilimsel ve politika alanları arasında bağlantı kurma yeteneğimizi geliştirmek anlamına gelir, çünkü karşılaştığımız zorluklar o kadar karmaşıktır ki tek bir bilim alanı nadiren gerekli tüm cevapları sağlayabilir.

Son olarak etki, politika yapıcılara politikalarının etkisini izleme ve değerlendirme konusunda yardımcı olmakla ilgilidir.

Aslen Euratom Antlaşması kapsamında kurulmuş olup, çalışmalarımızın bir kısmı nükleer alandadır.

Buna ek olarak JRC, neredeyse tüm AB politika alanlarını desteklemek üzere çok geniş bir disiplin yelpazesinden bilimsel uzmanlık ve yetkinlikler sunmaktadır.

JRC Canlandırma Stratejisi 2030'da açıklandığı üzere, bilim ve bilgi çalışmalarımız  33 portföy halinde düzenliyor.
 
Paylaş:
E-BÜLTEN KAYIT
Güncel makalelerimizden haberdar olmak için e-bültene kayıt olun!
Sosyal Medyada Bizi Takip Edin!
E-Bülten Kayıt